NOVEMBER

PC Backup Power Supplies
Parallelizing Prolog
5 Short Takes

he ’90s ”’

Compaq 386s
FlexCache 25386

Mac and PC Transputers
SpinRite

FullWrite

Zortech C + +

PC Lint

PRODUCT FOCUS

‘l 11
0 "440235"0

$3.50 U.S.A./$4.50 IN CANADA
0360-5280

275 Side by Side
by Klaus K. Obermeier

287 T800 and Counting
by Richard M. Stein

301 Getting the Job Done
by David Gelernter

311 The Third Dimension
by Michael J. Little and
Jan Grinberg

320 Boards and Boxes

272 BYTE « NOVEMBER 1988

[ENSEBEE R

arallel

rocessing

, arallel processing could be de-
' scribed as the ultimate in team-
work. In fact, the kind of team-
il work involved is not unlike that
found in the football stadium on an au-
tumn Sunday afternoon. The quarter-
back has his job to do, the center has his,
the ends and backs have theirs, and the
guards and tackles have theirs. All these
jobs are under way at the same time, but
they’re all different and being done by a
different player—parallel processing.

Similarly, when a group of people are
raking leaves, different people are doing
the same job, at the same time, with the
result of significantly cutting down on
the time required—also parallel process-
ing. Not all jobs, however, can be done in
parallel. That Thanksgiving turkey we
look forward to at the end of the month
can’t be rushed—microwaves aside.

The same basic concepts apply in com-
puting. Multiple processors operating in
parallel can perform many, but not all,
jobs faster than uniprocessors. A logi-
cally sequential program must still run
sequentially. However, a modular pro-
gram, or one that can be made modular,
can run different sections on different
processors and improve its speed.

Last summer, NASA’s Jet Propulsion
Laboratory introduced the Mark 3 Hy-
percube parallel supercomputer. Parallel
processing has long been the exclusive
realm of very large systems; however, it
is now becoming available at the micro-
computer level. For example, Zenith has
announced the Z-1000 with its parallel
80386s (see Microbytes on page 11), and
Cogent has come out with the XTM (see
the text box “The Crossbar Connection”
on page 278).

This month, we look at the world of
parallel processing from the microcom-
puter view. In “Side by Side,” Klaus K.
Obermeier looks at the field as a whole:

the appropriate algorithms and
tions; the programming lang
cluding old favorites and new
special parallel-processing f
ity; and the hardware and o
tem architectures involved.

One particularly applicable
hardware is the transputer
“T800 and Counting,” Richard
looks at the T800 transputer
INMOS, discussing both the
aspects of the transputer and the
software aspects of the o¢
guage—the two were designes
together.

Another language designed
lel processing on the transpuses
University’s Linda. In Gar’
Done,” David Gelernter, one
guage’s designers, gives us
scoop on the current state of
it does, how it does it, and =
cally parallel features.

Finally, we have an articlke
ent way of making computess
Third Dimension,” Michae! !
Jan Grinberg describe the i
of Hughes Research Lab's
puter. It’s an innately paraiis
built not of chips but of
wafers. It’s a fascinating

While the concept and
allel processing have a
large-computer arena, the
parallel-processing power o
still very new. The Mark 3
intended for simulations
Defense Initiative. Can
power really exist on a

—Jane
Senior Technical

STRATION: ROBERT PASTERNAK © 1988

Discover
Parallel
Processing!

A I AN A
& “‘vl,\,\s AN \ DOV IR

T
e W,

Monoputer/2"”

The World’s Most Popular
Transputer Development System

Since 1986, the MicroWay Monoputer has
become the favorite transputer develop-
ment system, with thousands in use world-
wide. Monoputer/2 extends the original

design from 2 to 16 megabytes and adds
an enhanced DMA powered interface. The
board can be used to develop code for
transputer networks or can be linked with other
Monoputers or Quadputers to build a transputer 1
network. It can be powered by the 20 MHz T414
or T800 or the new 25 MHz T425 or T800. b

i

Quadpt

Mainframe Pow

Parallel Languages For Your P
Fortran and C Make Porting a Snap! Microiitays Gadputart

Microway stocks parallel languages from 3L, Logical Systems and most versatile multiple transputes &
Inmos. These include one Fortran, two Cs, Occam, Pascal, and on the market today. Each processor can
our own Prolog. We also stock the NAG libraries for the T800 and 1, 4 or 8 megabytes of local memory. In add#es
Rockfield’s structural and thermal finite element package. A single or more Quadputers can be linked together with
T800 node costs $2,000, yet has the power of a $10,000 386/1167 cables to build large systems. One MicroWay customer s
. Isn't it time you considered porting your Fortran or C an 8 hour mainframe analysis to 15 minutes with five Quass

application to the transputer? giving him realtime control of his business.
For further information, please call MicroWay’s Technical Support staff at (508) 746-7341.

MICI’O World Leader in PC Numes:

P.O. Box 79, Kingston, MA 02364 USA (508) 7&¢.
32 High St, Kingston-Upon-Thames, UK., 07-5&7

USA FAX 617-934-2414 Australia 02-439-8400 Germany 069-7%

NS DIECPATE H
PARALLEL PROCESSING

Side by Side

You can only simulate true parallelism on your personal
computer today, but tomorrow will be another story

parallel-process-

ing computer,

simply defined, is

one that can per-
form operations using more
than one processor simulta-
neously. You can generally
divide parallel processing
into three major areas of re-
search: algorithms and appli-
cations; programming lan-
guages; and architecture,
including hardware and oper-
ating systems.

Where to Start

The conventional serial com-
puter suffers from one serious
drawback: the way the CPU
accesses memory. While data
is being retrieved from mem-
ory, it is actually written into
a processor register, and after
the register is incremented,
the new value is put back into
memory. During this period,
the CPU remains idle. This
phenomenon, known as the von Neu-
mann bottleneck, accounts for the some-
times slow and inefficient use of conven-
tional serial-processor resources.

But parallel processing has been
around longer than the von Neumann
bottleneck. As early as 1840, Charles
Babbage conceived of a way to perform
multiplication and indexing arithmetic
simultaneously. The first operating par-

LLUSTRATION: ROBERT PASTERNAK © 1988

Klaus K. Obermeier

allel processor was the ILLIAC IV. This
machine, developed by Dan Slotnick in
1966 at the University of Illinois, fea-
tured 64 processors.

Although the first commercial paral-
lel-processing system flopped—the $7
million Heterogeneous Element Proces-
sor, developed in 1985 by Denelcor—by
1986 more than a dozen companies were
either selling or in the process of building

parallel processors, including
Bolt Beranek and Newman,
Cray Research, DEC, IBM,
Intel, Alliant, Encore, and
Thinking Machines.

Today, parallel-processing
systems, such as the Connec-
tion Machine from Thinking
Machines, can execute a few
billion operations per second
using up to 65,536 processors
simultaneously. Searching a
database of over 30,000 docu-
ments (18 megabytes) on a
16,384-element Connection
Machine takes about 0.004
seconds for a Boolean query
with 25 terms. Dow Jones re-
cently purchased two 32,000-
processor, 256-megabyte
Connection Machines for use
with its information-retrieval
services.

The Parallel Approach
The central problem parallel-
processing systems face is
how to effectively and efficiently use
more than one processor at the same
time. A system’s effectiveness depends
on whether you can identify a problem
that lends itself to parallelism, determine
the algorithm, and map it onto a suitable
architecture.

As you can imagine, problems arise if
more than one processor requires access
Conlimused

NOVEMBER 1988 * BYTE 278

FNVBDIEP T H
SIDE BY SIDE

to the same memory location or if more
than one processor tries to increment
data in the same memory location.
Therefore, the common argument that
more processors are always faster than
one holds true for systems that can cope
with problems such as contention and
have appropriate synchronization mecha-
nisms in place.

Another factor that can prevent suc-
cessful use of parallelism is the bottom-
up approach parallel-processing-system
architects often take to hardware design.
Simply put, they sometimes don’t con-
sider the needs of the application design-
er when they configure the hardware.
People who write parallel applications
should always keep in mind the target ar-
chitecture so they can be sure their appli-
cation-design algorithm will be suitable
(e.g., whether they will use message
passing or shared memory).

The use of parallelizing compilers is
no answer to this problem. Parallelizing
compilers are most suitable when past in-
vestment does not warrant rewriting the
existing software. The programmer has
to consider the problem from two some-
times opposing points of view: top-down
for the design of the algorithm and bot-
tom-up for the actual implementation.

Algorithms and Applications
Parallel processing’s most common ap-
plications are simulation, modeling, and
optimization programs for commercial
use. Airline scheduling is among the po-
tential applications—calculating seat as-
signments and about 200,000 to 250,000
necessary changes in routing daily takes
United Airlines’ current aircraft assign-
ment model 15 hours of CPU time. If you
were a programmer faced with such a
task, you would first break down the task
into sizable chunks that could be pro-
cessed in parallel and then worry about
synchronization between the processors.
Unfortunately, your creativity for de-
signing a solution would be hampered by
the existing operating system and the
idiosyncratic architecture of the target
hardware.

What you should first do in such a situ-
ation is decide the necessary granularity
of the application. Granularity refers to
the amount of time being spent on com-
municating versus computing in a paral-
lel program. In a coarse-grained applica-
tion, the parallel-processing system
consists of large independent chunks
with little time—on the order of hundreds
of communications per second between
processors—spent on communicating be-
tween the individual processors. In a
fine-grained application, more time—

276 BYTE * NOVEMBER 1988

millions of communications per sec-
ond—is spent on communicating and
synchronizing between the processors.
In any case, you have to leverage your
solution with the encountered architec-
ture. In the example of the aircraft as-
signment task, a processor may be as-
signed to one flight in a fine-grained
system and to an entire aircraft in a
coarse-grained system.

Once you determine the application’s
granularity, consider what form the com-
munication between processors should

eople
who write parallel
applications should
always keep in mind the
target architecture.
(R

take, via shared memory or message
passing in distributed systems. While pro-
cessors in a shared-memory system com-
municate via a common data structure,
message passing takes place between two
processors. Ultimately, atomic opera-
tions (e.g., locks, semaphores, and mon-
itors) take over the task to synchronize
processors properly. Once the algorithm
is in place, it has to be synchronized with
a specific parallel-processing architec-
ture. What role do the programming lan-
guages play in matching algorithms to
architectures?

Programming Languages vs.
Compilers

For parallel processing, programmers
can choose between parallelizing com-
pilers and genuinely parallel program-
ming languages. Parallelizing compilers
are often used because of the high invest-
ment in existing application software or
in bringing the programmers up to
speed. As with digitizing old recordings,
parallelizing serial algorithms doesn’t
work as well as algorithms genuinely
conceived for parallel implementations.
And as for the alleged complexity of
writing programs in parallel, according
to Chuck Seitz, chief designer of Cal-
Tech’s Cosmic Cube, the precursor to
Hypercube, all other things being equal,
“Programming experimental computers
like the Cosmic Cube is not much harder

than programming sequential com-
puters, if the problem lends itself to a
concurrent solution.”

According to David Gelernter of Yale
University, parallel-programming lan-
guages can be classified into three cate-
gories: Algol-based languages (e.g.,
Ada, Linda); parallel Lisps and logic
languages (e.g., Multilisp, Concurrent
Prolog); and parallel functional lan-
guages (e.g., Parafl).

Algol-based languages span the spec-
trum from Ada, originally designed for
systems that execute sequentially, to
Linda, especially conceived for parallel
processing. Whereas Ada includes tools
to support parallel processing, a parallel
program written in Linda is, according to
an article by S. Ahuja, a “spatially and
temporally unordered bag of processes,
not a process graph.”

The Linda system consists of operators
that can turn any host language (e.g.,
FORTRAN or C) into a parallel-pro-
gramming language. However, it is an
autonomous language consisting of a
run-time kernel for synchronization and
a compiler. Furthermore, it allows for
parallelism both in the form of partition-
ing simultaneous processes and in repli-
cating identical ones. (See “Getting the
Job Done” on page 301.)

Parallel Lisps focus on symbolic
rather than numeric parallel processing.
The difference between the two, accord-
ing to Robert Halstead, is that “numeri-
cal programs may be described as deliv-
ering numbers to an arithmetic unit to
calculate a result,” whereas ‘symbolic
computation emphasizes rearrangement
of data.” Consequently, parallel Lisps
are prime candidates for artificial-intel-
ligence applications with an emphasis on
operations such as recursion on trees and
lists, rather than iterations in the form of
loops for numerical computations.

Parallel functional programming in-
cludes a methodology that allows map-
ping programs to parallel-processing to-
pologies. According to Paul Hudak, the
most important aspect of this methodol-
ogy is that “it treats the multiprocessos
as a single autonomous computer onts
which a program is mapped, rather thas
as a group of independent processors tha
carry out complex communications am
require complex synchronization.
Rather than having side effects from as
signment statements, functional las
guages guarantee that a program wi
have the same result regardless of the
order in which it has been executes
Therefore, in functional languages the
parallelism is implicit and supported

continues

| NDE PTH
SIDE BY SIDE

The Crossbar Connectic

wo processors should be twice as

fast as one, and a thousand proces-
sors should be a thousand times as fast—
at least in theory. But that depends on
getting those thousand processors talk-
ing to each other, and that’s not an easy
task. In a fully connected network, in-
terconnecting only 30 processors re-
quires 435 separate connections; 1000
processors would require 499,500 con-
nections.

A fixed network structure (such as a
Hypercube) avoids that problem by con-
necting each processor to only a few
neighbors, but then data must be passed
from processor to processor through the
network for distant processors to com-
municate. Alternatively, all the proces-
sors can share a common communica-
tions bus, but that risks tying up the bus
if two processors have lots of data to ex-
change, bringing communications for

Frank Hayes

the rest of the system to a screeching
halt.

Cogent Research in Beaverton, Ore-
gon, thinks there’s a better solution.
Cogent’s new desktop supercomputer,
the XTM (see photo A), can connect
any number of parallel processors,
without passing data hand-to-hand
through a network or tying up a com-
mon bus when there’s lots of data to ex-
change. Instead, the Cogent machine
has a hybrid communications architec-
ture that has both a common bus and a
unique network system.

The Cogent XTM

The XTM’s processors are INMOS
T800 transputers. Each transputer has 4
megabytes of RAM, as well as four
high-speed serial-communications
channels specifically designed for ex-
changing data with other transputers.

Photo A: Cogent Research’s XTM parallel desktop supercomputer, based
on the INMOS T800 transputer and Yale University’s Linda programming
language. (Photo courtesy of Cogent Research, Inc.)

In the XTM, the transputers all share
an ordinary parallel-communications
bus, through which messages can be
sent. Separately, the four serial-com-
munications channels from each trans-
puter are connected to an intelligent
switching system. Inside the intelligent
switch, the serial-communications
channels from all the transputers in the
system are arranged in a network—but
with no permanent connections. Upon
request, the intelligent crossbar switch
can directly connect any two trans-
puters in the network. Consequently,
any two transputers can talk either
through the shared bus or through a
temporary “private” direct connection
(see figure A).

For example, suppose processor A
wants to send a large collection of data
to processor B. If A sent the data
through the common bus, it would tie up
the bus—a classic communications bot-
tleneck. Instead, A sends a message
through the bus to the crossbar-switch
controller, asking for a direct connec-
tion to B.

Once the connection is made, A can
send data to B at high speed without in-
terfering with any other processor’s
communications. Once the data transfer
is complete, A sends another message to
the switch controller, asking it to dis-
connect A from B, and the two proces-
sors are free to make new connections.

Meanwhile, every other pair of pro-
cessors in the system can be connected
in the same way. While A and B are ex-
changing data, C and D can make their
own connection. At least in theory, in a
1000-processor system, 500 serial con-
nections could be transferring messages
at high speed.

It takes the XTM’s intelligent cross-
bar switch less than 40 microseconds to
link any two processors, and only 200 to
400 ps to completely reconfigure the
entire computer. (The XTM can even be
reconfigured to mimic a Hypercube or
another fixed network.)

Because the communications net-
work is dynamically reconfigurable, all
the processors can communicate di-
rectly through a relatively small number
of communications channels. One thou-
sand processors can communicate using
only 4000 serial lines—less than 1 per-

278 BYTE + NOVEMBER 1988

oy w . o W v
OPFPR TOR > BeRSTTEFEROTBRERTA

LA

RRRe T ¥EEN

ENSSDIEP T H
SIDE BY SIDE

R

cent of the number required for a fully
connected network. As a result, the
number of processors in the system is al-
most unlimited. Cogent has designed a
system for Sandia National Laboratory
that contains 1900 processors and has
roughly the same computing power as a
Cray X-MP.

A more typical Cogent XTM system
sits on a desktop and has two processors
in a workstation cabinet that’s slightly
smaller than an IBM PC (14 by 14 by 6
inches). Along with the processors, the
workstation contains a 90- or 190-mega-
byte hard disk drive, an 800K -byte 3%-
inch floppy disk drive, and three NuBus
slots.

There are also an external 1024- by
808-pixel display, a keyboard, and a
mouse. The least expensive XTM sys-
tem (with a 90-megabyte hard disk drive
and a monochrome display) costs
$19,800.

To add processors to this basic Sys-
tem, you first need to add'a resource
server (a 14 by 18 by 6 cabinet with 16
slots and the intelligent crossbar switch)
and a communications card to connect it
to the XTM.

As a result, going from two proces-

sors to four adds another $35,000 to the
price. After that, you can add compu-
tation cards (each one contains two
transputers) for $12,000 each—until
you run out of slots in the resource
server, at which time you can add an-
other resource server. Additional disk
Storage comes in the form of a disk
server (1.9 gigabytes, plus an 810-
megabyte optical drive for backup, for
$60,000). The workstation, resource
servers, and disk servers all communi-

- cate through fiber-optic cable at 100
megabits per second.

An Easy Growth Path

The price on a desktop supercomputer
can rise quickly. A workstation with a
single resource server packed full of
processors fits easily on a desktop—and
costs over $200,000. The Cray-class
system Cogent designed for Sandia will
cost $15 million to build.

But the XTM is unique among super-

computers in that both the two-proces-
sor minimal system and the 1900-pro-
cessor Sandia machine use exactly the
same hardware. And with enough time

and money, you can build any system
into a colossus—without changing the
software. The XTM’s operating system
is based on the Linda parallel-program-
ming concept, which is effectively blind
to the number of processors in the com-
puter. A program written in FORTRAN
or C using the Linda extensions will run
on a minimal XTM system. Add two (or
a dozen) more processors, and the pro-
gram will run in exactly the same way—
but nearly twice (or a dozen times) as
fast.

And how fast is fast? Each of the
XTM’s transputers adds 3 million
floating-point operations per second

. of processing power. Cogent’s design-

ers believe that because the XTM can be
so easily tailored to match computa-
tional problems—adding more number-
crunching capability as it’s needed—the
new machine will open up a completely
new range of problems that were previ-
ously inaccessible from desktop
workstations.

Frank Hayes is an associate news editor
Jor BYTE in San Francisco. He can be

reached on BIX as “frankhayes.”

Switch

Control

y/

The
operator

Processor A

Processor B

Processor C

Bus

¥igure A: The Cogent XTM'’s communications

system. For A to exchange data with B, A notifies the switch controller via

e communications bus. The controller then orders the intelligent switch to make a direct connection between A and B.

NOVEMBER 1988 * BYTE 279

= ———

ENEBIEP T H
SIDE BY SIDE

B]

P = Processor
. M = Memory
| S = Switch

Parallel-Processing
Architecture

Distributed memory

Shared memory MP MP

MP MP MP

Complete interconnection

—T [
MP MP TJ_\\F

Crossbar connection 1 i _l
il |
MP MP MP
L_M_._ E MP MP [MP
1 |]
Mesh

Multistage switches

Hypercube

Figure 1: Shared memory architectures allow parallel systems to access a common shared memory, as opposed to distributed
memory systems, which provide memory to each processor.

280 BYTE * NOVEMBER 1988

IN DEPTH
SIDE BY SIDE

e e——

Concurrency
control
bus

Interconnect

CP
cache 1

CP
cache 2

Memory bus

Physical
memory

IP IP

cache cache

3
IP7 ‘

IP .
cache

Figure 2a: The FX/8 system’s common-bus architecture. The ACE processors (Advanced Computational Elements) function as

application processors. I/O and operating-system jobs are performed by

the interactive processors, which are 68020-based.

underlying semantics. In brief, functional
languages are prime candidates for pro-
gramming parallel machines.

All about Architecture
A dichotomy exists between shared-
memory architectures and distributed-
memory architectures. The former allow
parallel systems to have access to a com-
mon, shared memory, while the latter
give each processor its own memory. As
shown in figure 1, a multitude of config-
urations is possible and has been used for
building parallel-processing systems.
The most widely used architectures
are bus-based systems, the Hypercube,

and a design using special-purpose
switches, as shown in figures 2a, 2b, and
2c. A less widely known architecture is
found in wafer technology. (See “The
Third Dimension” on page 311.)
Bus-based systems (e.g., the FX/8,
from Alliant Computer Systems, Little-
ton, Massachusetts) provide the simplest
form of parallelism, having a set of pro-
cessors connected to a set of memory
boards .via a common bus. Although
these systems are attractive for their sim-
plicity, problems arise in the form of
limited scalability, contention for ac-
cessing the same memory location, and
rising costs for overall speed gain. In ap-

plications dominated by scalar code, like
older mechanical CAD applications, you’ll
find good speed increases with from one
to four processors, but after that, adding

processors won’t increase speed.
Hypercube (e.g., the Connection
Machine from Thinking Machines,
Cambridge, Massachusetts), based on
CalTech’s Cosmic Cube, allows multidi-
mensional connections between proces-
sors, thus connecting every processor at
least indirectly. Although it’s attractive
for its capability to interconnect thou-
sands of individual Pprocessors, commu-
nication speed between processors may
continued

NOVEMBER 1988 * BYTE 281

PNFADIEP T H
SIDE BY SIDE

; Micro |/ 1
i /| controller [\
end E / o : :=-
. an
Mi 4
Front) — o 2
e L I i controller +
(1/0)
Front [P Micro
end controller N
Front = b Micro
Bus | y
end I:I controller
Processor
=
1% >/ Router
Memory ALU —N u—“:
—Vi—
} ey
LR | | B Memory Memory
sy _ W,
L
Figure 2b: The Connection Machine’s Hypercube architecture and blowup of individual processor.
MC68020
processor and 4-megabyte RAM
MC68881
coprocessor
32-bit data bus
. S R r
MC68851 g k Memory controller -__-: S\QV n%\c/ive:
node
MMU o \ f—
~ | SW sw[—
; —] node node[——
Special Bootstrap Processor Switch | /
function EEPROM node | interface > .
decoder controller = l.sw sw =
|] node] node |——
. Control Biolink s
o . .| swW sw |—
adapter | —1 node | node[——
— i

Figure 2c: A Butterfly processor node block diagram and blowup of the Butterfly switch design.

282 BYTE ° NOVEMBER 1988

EINSRBEE P
SIDE BY SIDE

vary depending on the number of inter-
vening processor nodes. Ultimately,
programming a Hypercube architecture
may require treating it as a loosely cou-
pled multiprocessor with explicit data
placement and task assignment per node
ander certain memory size limitations.

Multistage switch architectures (e.g.,
the Butterfly from Bolt Beranek and
Newman, Cambridge) are closely mod-
cled around crossbar switching connec-
tions that use separate buses for each pro-
cessor. Whereas crossbar architecture
%as a serious contention problem, if two
processors want to communicate with the
same memory location at the same time,
special-purpose switches allowing
multiple paths to the same memory node
slleviate the contention problem. (See
the text box “The Crossbar Connection”
on page 278.)

The Problem with Benchmarking

In general, benchmarking parallel-pro-
cessing systems is a formidable, if not
mpossible, task. While you can use
MIPS (million instructions per second)
2nd MFLOPS (million floating-point op-
erations per second) to compare parallel-
processing machines, their ratings may
s skewed by I/O-intensive programs or
the types of programs themselves. More-
wer, transporting code between paral-
el-processing machines of different
'ypes is not possible.

A popular dichotomy between right-
wing and left-wing machines points to
‘he important role of the operating sys-
m. Just as ideological differences set
conservatives apart from liberals when it
comes to the role of the government,
night-wing machines (e.g., Hypercube-
sased) offer little control or support
‘irough their operating systems. With
fese machines, programmers are re-
quired to code more low-level operations
semselves. Left-wing machines (e.g.,
Sutterfly) provide more generous sup-
sort by the operating system.

The Personal Computer Connection
#hile parallel processing has reached
% minicomputer market, parallel-pro-
cessing capabilities for personal com-
suters are slowly emerging and usually
come in two forms: expansion boards
wnd software simulation. (See “T800 and
~ounting” on page 287.) The INMOS
2700 Card and T414 CPU offer IBM PC
wsers parallel-processing capabilities as
sart of the D701 Transputer Develop-
=ent System. The package comes with
% Algol-based programming language
wccam. The T414 CPU, a 32-bit micro-
srocessor, is able to pass information to

multiple processors while at the same
time operating on a problem.

Another expansion board that offers
parallel-processing capability is the
PCturbo 286¢ from Orchid Technology.
The board connects to the IBM PC AT or
XT and lets you run simultaneous appli-
cations in the computer’s standard mem-
ory and the 286e’s RAM. If you choose
to run two programs in parallel that try
to access the same data or write to the
same disk sector, the data may be
compromised.

arallel-
processing capabilities
Jfor personal computers
are slowly emerging.
IR

The complexity and cost of commer-
cial parallel-processing machines avail-
able today make them prohibitively ex-
pensive for mass use. The available
expansion boards that may allow some
parallel processing on personal com-
puters are primarily for the programmer
exploring the flavor of this technology.
Integration into existing infrastructures
makes personal computers probable can-
didates for host or front-end vehicles.

Where We Are Going?
Parallel processing, despite its commer-
cial impact over the past 5 years and its
academic endeavors over the past 20
years, is still in an embryonic state. The
three most significant issues standing in
the way of necessary commercial break-
throughs are standardization of parallel-
processing languages and architectures,
integration of parallel processing into the
existing computing infrastructure, and
design of solid interfaces required by the
complexity of the programming tasks.
Standardization of parallel-processing
languages and architectures is important
because there is currently no standard-
ization of parallel-processing techniques
in sight. One reason for this is that paral-
lel-processing technologies are still
mostly in R&D laboratories, an environ-
ment that promotes individualism. An-
other reason is the potential for diverse
applications that makes it impossible to
predict what such standards should look
like. Finally, the design of hardware is so

far ahead of the state of the art in soft-
ware development that both disciplines
have to be brought to the same level be-
fore standardization of either software or
hardware becomes possible.

Integration of parallel processing into
the existing computing infrastructure is
important because drastic changes are
slow to be implemented, especially in an
investment-intensive area like software
development and hardware purchases.
Although projects like the one that in-
volves Dow Jones and Thinking Ma-
chines show some promise, many more
successful applications have to come
about before parallel processing be-
comes a major force in the commercial
computing market. As with any other in-
novation, commercial evolution has to
follow the revolution in the laboratories.
Integration is the key.

Last but not least, the design of solid
interfaces required by the complexity of
programming tasks is a necessity. As we
are beginning to imagine programming
parallel systems of multiple gigabytes in
size, debugging and maintaining such
programs, much more than actually
using them, will be delegated to the user
interface. Ultimately, programs may
come about through the intelligent inter-
action in English between the user and
the interface.

For these reasons, personal computer
users will have to limit themselves to
simulating parallelism in the near fu-
ture—that is, until commercial parallel-
processing technology matures. ®

BIBLIOGRAPHY

Chandy, K., and Misra, F. Parallel Pro-
gram Design. Reading, MA: Addison-
Wesley, 1988.

Dongarra, J. C., ed. Experimental Parallel
Computing Architecture. Amsterdam:
Elsevier Science Publishing Co., 1987.

Fox, G. C., and Messina, P. C. “Advanced
Computer Architectures.” Scientific
American, October 1987, pp. 66-77.

Frenkel, K. A., ed. “Parallel Processing.”
Communications of the ACM, vol. 29,
no. 12, December 1986, pp. 1168-1239.

Gelernter, D., ed. “Domesticating Paral-
lelism.” Computer, vol. 19, no. 8, Au-
gust 1986, pp. 12-72.

Gullo, K., and Schatz, W. “The Super-
computer Breaks Through.” Datama-
tion, vol. 34, no. 9, 1988, pp. 50-63.

Hillis, W. D. The Connection Machine.
Cambridge, MA: The MIT Press, 1986.

Klaus K. Obermeier is a projects man-
ager of the AI Group at Battelle Labora-
tories in Columbus, Ohio. He can be
reached on BIX c/o “editors.”

NOVEMBER 1988 « BYTE 283

