
Compaq 386s
FlexOache 25386
Mac and PC Transputers
SpinRite
FullWrite
Zortech C + +
PC Lint

PRODUCT FOCUS

r:-Glqijill!€TaFFl{i1x!ffi Yl l 5:.i:

:,+ffi,i.l,|ir!i;.l4.iutin,,i

25-MHz
Math
8
wi

l

:

i
l
il

,llililillllllliltil
$3,50 U.S.A./$4.50 lN CANAoA

0360.5280

for the '90s"

,,i$,tlr$[$$Illt.t..\ilrii
275 Sideby Side

by Klaas K. Obermeier

287 T800 and Counting
by Richard M. Stein

301 GettingtheJob Done
by David Gelernter

311 The Third Dimension
by MichaelJ. Little and
Jan Grtnberg

320 BoardsandBoxes

I N D E P T H

ParuIlel
Processing

arallel processing could be de-
scribed as the ultimate in team-
work. In fact, the kind of team-

,,l\\', work involved is not unlike that
found in the football stadium on an au-
tumn Sunday afternoon. The quarter-
back has his job to do, the center has his,
the ends and backs have theirs, and the
guards and tackles have theirs. All these
jobs are under way at the same time, but
they're all different and being done by a
different player-parallel processing.

Similarly, when a group of people are
raking leaves, different people are doing
the same job, at the same time, with the
result of sigrrificantly cutting down on
the time required-also parallel process-
ing. Not alljobs, however, can be done in
parallel. That Thanksgiving turkey we
look forward to at the end of the month
can't be rushed-microwaves aside.

The same basic concepts apply in com-
puting. Multiple prccessors operating in
parallel can perform many, but not all,
jobs faster than uniprocessors. A logi-
cally sequential program must still run
sequentially. However, a modular pro-
gram, or one tltat can be made modular,
can run different sections on different
processors and improve its speed.

Last summer, NASA's Jet Propulsion
Laboratory introduced the Mark 3 Hy-
percube parallel supercomputer. Parallel
processing has long been the exclusive
realm of very large systems; however, it
is now becoming available at the micro-
computer level. For example, Zenith has
announced the 2-1000 with its parallel
80386s (see Microbytes on page 11), and
Cogent has come out with the XTM (see
the text box "The Crossbar Connection"
on page 278).

This month, we look at the world of
parallel processing from the microcom-
puter view. In "Side by Side," Klaus K.
Obermeier looks at the field as a whole:

the appropriate algorithms ad
tions; the programming lang
cluding old favorites and new
special parallel-processing I
ity; and the hardware and qc
tem drchitectures involved.

One particularly applicat&
hardware is the transputer
"T800 and Counting," Richrt
looks at the T800 transput€r
INMOS, discussing both fu
aspects of the transPuter erd
software aspects of the
guage-the two were desigd
together.

Another language designcl
lel processing on the I
University's Linda. In
Done," David Gelernter, c
guage's designers, gles c
scoop on the current state d
it does, how it does it, rd
cally parallel features.

Finally, we have an
ent way of making comFr
ThirdDimension," Mi$d
Jan Grinberg describe thc
of Hughes Research L$'r
puter. It's an innately penl
built not ofchips but ofr
wafers. It's a fascinatilg

While the concept and
allel processing harc r
large-computer arena, fu
parallel-processing pow
still very new. The lvlart t
intended for simulatims
Defense Initiative. Cn
power really exist on a

-Jou
SeniorTeclnial

7N BYTE . NOVEMBERIgS8

lllllllffiiry*mrum

r t$lT.AfION: ROBERTPASTERNAK @ l9E8 NOVEMBER,I96t. BYTE

T

+ t

af

trIrffi:r

I

f i .

h*rr

I N D E P T H

PARALLEL PROCESSING

Side by Side
You can only tq*4t, true parallelism on your personal

computer today, bat tomorrow will be aimhdr snry

KInw K. Obermeier

parallel-process-
lng computer,
simply defined, is
one tlat can per-

form operations using more
than one prccessor simulta-
neously. You can generally
divide parallel pr-ocessing
itrto three major areas of re-
search: algorithms and appli-
cations; programming lan-
guages; and architecture,
including hardware and oper-
ating systems.

Where to Start

But, parallel processing has been
around longer tlan the von Neumann
bottleneck. As early as 1840, Charles
a"!!"gg conceived of a way to perform
multiplication and indexing arithmetic
simultaneously. The first operating par-

f,JUSTRATION: ROBERT PASTERNAK @ l9E8

The conventional serial com- ,l
puter suffers from one serious
drawback: tlre way the CpU
accesses memory. While data
is being retrieved from mem-
ory, it is actually written into
a processor register, and after
the register is incremented,
the new value is put back into
nemory. During this period,
the CPU remains idle. This
phenomenon, known as the von Neu-
mann bottleneck, accounts for the some-
times slow and inefficient use of conven-
rbnal serial-processor resources.

parallel processors, including
Bolt Beranek and Newman,
Cray Research, DEC, IBM,
Intel, Alliant, Encore, and
Thinking Machines.

Today, parallel-processing
systems, such as the Connec-
tion Machine from Thinking
Machines, can execute a few
billion operations per second
using up to 65,536 prccessors
simultaneously. Searching a
database ofover 30,000 doiu-
ments (18 megabytes) on a
16,384-element Connection
Machine takes about 0.0(X
seconds for a Boolean query
with 25 terms. Dow Jonis re-
cently purchased two 32,00G
processor, 256-megabyte
Connection Machines Tor use
with its information-retrieval
services.

The Parallel Approach
The central problem parallel-

As you can imagine, problcms arisc if
more than one processor rcquircs J€tcr

d-

, processing systems face is
how to- effectively and efficiently usc
more than one processor at the

-sae

time.. A- system's effectiveness @nds
o.n whether you can identify a proUcn
that lends itself to parallelism, deternic
the.{gorithm, and map it mto a suitsilc
arcnrtectur€.

allel processor was the ILLIAC IV. This
machine, developed by Dan Slotnick in
1966 at the University of lllinois, fea-
tured 64 processors.
. .Although the first commercial paral-
lel-proce_ssing system flopped-t-he $7
rnilIlon tteterogeneous Element prroces_

lgljenetoped in 1985 by Denelcor_by
1986 more than a dozen iompanies were
either selling or in the procesi ofbuilding

NOVEMBER,I9tt . BYTE t7'

I N D E P T H

SIDE BY SIDE

to t}r sarre memory location or if more
than ore proc€ssor tries to increment
data in the same memory location.
Tberefqe, the common argument that
rnor€ processors are always faster than
m holds true for systems that can cope
with problems such as contention and
barc appropriate synchronization mecha-
nisms in place.

Another factor that can prevent suc-
cessful use ofparallelism is the bottom-
up approach parallel-processing-system
architects often take to hardware design.
Simply put, they sometimes don't con-
sider the needs ofthe application design-
er when they configure the hardware.
People who write parallel applications
should always keep in mind the target ar-
chitecture so they can be sure their appli-
cation-design algorithm will be suitable
(e.g., whether they will use message
passing or shared memory).

The use of parallelizing compilers is
no answer to this problem. Parallelizing
compilers are most suitable when past in-
vestment does not warrant rewriting the
existing software. The programmer has
to consider the problem from two some-
times opposing points of view: top-down
for the design of the algorithm and bot-
tom-up for the actual implementation.

Algorithms and Applications
Parallel processing's most common ap-
plications are simulation, modeling, and
optimization programs for commercial
use. Airline scheduling is among the po-
tential applications-calculating seat as-
signments and about 200,000 to 250,000
necessary changes in routing daily takes
United Airlines' current aircraft assign-
ment model 15 hours of CPU time. If you
were a programmer faced with such a
task, you would first break down the task
into sizable chunks that could be pro-
cessed in parallel and then worry about
synchronization between the processors.
Unfortunately, your creativity for de-
signing a solution would be hampered by
the existing operating system and the
idiosyncratic architecture of the target
hardware.

What you should first do in such a situ-
ation is decide the necessary granularity
of the application. Granularity refers to
the amount of time being spent on com-
municating versus computing in a paral-
lel program. In a coarse-grained applica-
tion, the parallel-processing system
consists of large independent chunks
with little time-on the order of hundreds
of communications per second between
processors-spent on communicating be-
rueen the individual processors. In a
fine-grained application, more time-

M' BYTE. NOVEMBER1988

millions of communications per sec-
ond-is spent on communicating and
synchronizing between the processors.
In any case, you have to leverage your
solution with the encountered architec-
ture. In the example of the aircraft as-
signment task, a prc,cessor may be as-
signed to one flight in a fine-grained
system and to an entire aircraft in a
coarse-grained system.

Once you determine the application's
granularity, consider what form the com-
munication between processors should

P"o,
who write parallel
applications should

always keep in mind the
target architecture.

r

take, via shared memory or message
passing in distributed systems. While pro-
cessors in a shared-memory system com-
municate via a common data structure,
message passing takes place between two
processors. Ultimately, atomic opera-
tions (e.g., locks, semaphores, and mon-
itors) take over the task to synchronize
processors prcperly. Once the algorithm
is in place, it has to be synchronized with
a specific parallel-processing architec-
ture. What role do the programming lan-
guages play in matching algorithms to
architectures?

Programming Languages vs.
Compilers
For parallel processing, programmers
can choose between parallelizing com-
pilers and genuinely parallel program-
ming languages. Parallelizing compilers
are often used because ofthe high invest-
ment in existing application software or
in bringing the programmers up to
speed. As with digitizing old recordings,
parallelizing serial algorithms doesn't
work as well as algorithms genuinely
conceived for parallel implementations.
And as for the alleged complexity of
writing programs in parallel, according
to Chuck Seitz, chief designer of Cal-
Tech's Cosmic Cube, the precursor to
Hypercube, all other things being equal,
"Prognmming experimental computers
like the Cosmic Cube is not much harder

than programming sequential com-
puters, if the problem lends itself to a
concurrent solution."

According to David Gelernter of Yale
University, parallel-proiramming lan-
guages can be classified into three cate-
gories: Algol-based languages (e.g.,
Ada, Linda); parallel Lisps and logic
languages (e.g., Multilisp, Concurrent
Prolog); and parallel functional lan-
guages (e.g., Parafl).

Algol-based languages span the spec-
trum from Ada, originally designed for
systems that execute sequentially, to
Linda, especially conceived for parallel
processing. Whereas Ada includes tools
to support parallel processing, a parallel
program written in Linda is, according to
an article by S. Ahuja, a "spatially and
temporally unordered bag of processes,
not a process graph."

The Linda system consists ofoperators
that can turn any host language (e.g.,
FORTRAN or C) into a parallel-pro-
gramming language. However, it is an
autonomous language consisting of a
run-time kernel for synchronization and
a compiler. Furthermore, it allows for
parallelism both in the form ofpartition-
ing simultaneous processes and in repli-
cating identical ones. (See "Getting the
Job Done" on page 301.)

Parallel Lisps focus on symbolic
rather tlan numeric parallel processing.
The difference between the two, accor&
ing to Robert Halstead, is that "numeri-

cal programs may be described as deliv-
ering numbers to an arithmetic unit to
calculate a result," whereas "symbolb

computation emphasizes rearrangemeil
of data." Consequently, parallel Liryc
are prime candidates for artificial-intel-
ligence applications with an emphasis o
operations such as recursion on trees ad
lists, rather than iterations in the form d
loops for numerical computations.

Parallel functional programming in-
cludes a methodology that allows map
ping programs to parallel-processing to
pologies. According to Paul Hudak, tb
most important aspect of this method*
ogy is that "it treats the multiprocesw
as a single autonomous computer m
which a program is mapped, rather tlrr
as a group ofindependent processors tb
carry out complex communications d
require complex synchronization.-
Rather than having side effects from r
signment statements, functional hr
guages guarantee that a program rl
have the same result regardless of b
order in which it has been exectd,
Therefore, in functional languages
parallelism is implicit and supported

I N D E P T H

SIDE BY SIDE

sors should be a thousand times as fast-
at least in theory. But that depends on

wo processors should be twice as
fast as one, and a thousand Proces-

The Crosshar Connectieirx
Frank HaYes

the rest of the system to a screeching
halt.

Cogent Research in Beaverton, Ore-
gon, ihinks there's a better solution.
Cogent's new desktoP supercomPuter'
the XTM (see Photo A), can connect
any number of parallel processors'
wiihout passing data hand-to-hand
through a network or tying u! a com-
mon bus when there's lots of data to ex-
chanse. Instead, the Cogent machine
has ihybrid communications architec-
ture that has both a common bus and a
unique network system.

The Cogent XTM
The XTV's Processors are INMOS
T800 transputers. Each transputer has 4
megabytes-of RAM, as well as four
hish-speed serial-communications
chinneis specifically designed for ex-
changing data with other transputers.

In the XTM, the transputers all share
an ordinary parallel-communications
bus, through which messages can bc
sent. Separately, the four serial-com-
munications channels from each trans-
Duter are connected to an intelligeur
iwitching system. Inside the intelligent
switch. the serial-communications
channels from all the transputers in thc
system are arranged in a network-but
with no permanent connections' Upm
request, the intelligent crossbar switch
can directly connect any two trans-
puters in the network. Consequently.
iny two transPuters can talk either
thiough the shared bus or through a
temporary "private" direct connection
(see figure A).

For example, suPPose Processor A
wants to send a large collection of data
to processor B' If A sent the data
through the common bus, it would tie up
the bus-a classic communications bot-
tleneck. Instead, A sends a message
through the bus to the crossbar-switch
controller, asking for a direct connec-
tiontoB.

Once the connection is made, A can
send data to B at high speed without in-
terfering with any other processor's
communications. Once the data transfer
is complete, A sends another message to
the sw-itch controller, asking it to dis-
connect A from B, and the two Proces-
sors are free to make new connections.

Meanwhile, every other Pair of Pro
cessors in the system can be connected
in the same waY. While A and B are ex-
changing data, C and D can make their
own ionnection. At least in theory, in a
lO00-processor system' 500 serial con-
nections could be transferring messages
at high sPeed.

It takes the XTM's intelligent cross-
bar switch less than 40 micrclseconds to
link any two processors' and only 200to
a00 pi to completely reconfigure the
entire computer. (The XTM can even be
reconfigured to mimic a Hypercube or
another fixed network.)

Because the communications net-
work is dynamically reconfigurable' all
the processors can communicate di-
rectly through a relatively small number
of communications channels. One thou-
sand processors can communicate using
only 4669 serial lines-less than I per-

gening those thousand processors talk-
ins to each other, and that's not an easy
uJt. tn a fully connected network, in-
terconnecting only 30 processors re-
quires 435 separate connections; 1000

irocettors would require 499,5fi) con-
nections.

A fixed network strucnlre (such as a
Hypercube) avoids that problem by con-
ne.iing each processor to only a few
neighbors, but then data must be passed
from processor to processor through the
network for distant processors to com-
municate . Alternatively, all the proces-
sors can share a common communica-
tions bus, but that risks tying up the bus
iftwo processors have lots ofdata to ex-
change, bringing communications for

Photo A: Cogent Research's XTM parallel desktop lul?rcgmputer' bos:!
nn the INMOS T8m tra.nsDuter and Yale University's Linda programm'ng

based

on the INMOS 7800 transPuter
language. (Photo courtesi of Cogent Research, Inc')

27X BYTE. NOVEMBER1988

I N D E P T H

SIDE BY SIDE

s

-

f,

l

5

I

n
o
h
t _

a

n

.A

1A
la
!P
I .

F
ch
r -

ln

ID.
l ' !
k!
r l c

ht-

cent of the number required for a fully
connected network. As a result. thl
number ofprocessors in the system is al_
most unlimited. Cogent has designed a
system for Sandia National Laboratorv
that contains 1900 processors and has
loughly the same computing power as a
Cray X-MP.

. A morg typical Cogent XTM system
srts on a desktop and has two processors
in a workstation cabinet that,s slightly
smaller than an IBM pC (14 by runy 6
inches). Along with the processors, the
worKstatlon contains a 90_ or 190_mega_
Pytg lgrd disk drive, an 800K_byte 37_
inch floppy disk drive, and three NuBus
slots.

There are also an external 1024_ bv
808-pixel display, a keyboard, and a
mouse. The least expensive XTM svs_
tem (with a 9O-megabyte hard disk drive
and a monochrome display) costs
s I 9,800.

To add processors to this basic svs_
tem, you first need to add'a resouice
server (a 14 by 18 by 6 cabinet with 16
slots and the intelligent crossbar switch)
and a communications card to connect ii
:o theXTM.

As a-result, going from two proces_
sors to four adds another $35,00b to the
price. After that, you can add compu_
tation cards (each one contains two
transputers) for $12,000 each_until
you run out of slots in the resource
server, at which time you can add an_
otner resource server. Additional disk
storage comes in the form of a disk
server (1.9 gigabytes, plus an gl0_

T:^CtI!e optical drive for backup, for
$60,000). The workstation, resource
servers, and disk servers all communi-
cate through fiber-optic cable at 100
megabits per second.

An Easy Growth path
The price on- a desktop supercomputer
can rise quickly. A workstation with a
single resource server packed full of
processors fits easily on a desktop_and
costs over $200,000. The Cray_class
system Cogent designed for Sandia will
cost $15 million to build.

But the XTM is unique among super_
computers in that both the two-proces_
sor minimal system and the 1900_pro-
cessor Sandia machine use exactly the
same hardware. And with enough time

and money, you can build any system
into a colossus-without changing the
9oftwa1e. The XTM's operating syitem
is based on the Linda paiallel-piogram_
mlng concept, which is effectively blind
to the number of processors in th! com_
puter. A program written in FORTRAN
or C using the Linda extensions will run
on a minimal XTM system. Add two (or
a dozen) rnore processors, and the pio_
gram will runin exactly the same way_
but nearly twice (or a dozen timesj as
fast.

And how fast is fast? Each of the
XTM's transputers adds 3 mill ion
floating-point operations per second
of processing power. Cogent's design_
ers believe that because the XTM caribe
so easily tailored to match computa_
tional problems-adding more number_
crunching capability as it's needed_the
new machine will open up a completely
new.ran€e of problems that were previ_
ously inaccessib le f rom desktop
workstations.

Frank Hayes is an associate news editor
for BYTE in San Francisco. He can be
reached on BIX as 'frankhayes.,,

G

F

Dl-

I B

0 r
L
r h
B C r

c3-
C

l(>

E

cr-
Er:
i l a

F .
, &
&-

a.!
E}
q

F

trgure A: The Cogent XTM,s communications system. lor lto exchange d""':^-"t'*io"t b::he controllerthrn orirn th"-i;;i;;";#r"";;7ran, o direct connection between A and B.

,ii

I

NOVEMBER1988. BYTE 27g

I N D E P T H

SIDE BV SIDE

Complete interconnection

Crossbar connection

ffiarchitecturesallowparallelcyctemstoacceSsacomtnonsharedmcmory,asopposedtodistributed
ii^ory systems, whichprovide memory to eachprocessor'

2f f i BYTE. NOVEMBER1988

I N D E P T H

SIDE BY SIDE

Concurrency
control
bus

Memory bus

\

K,
T /

nceZ
\

\ - /

a
cache 1 In,ilu - \

Ace 8

Figure 2a: The FX/8 svstem,s common_bus architecture. Th,
lCZ {gutroapplication processors'- I/o ana iiii'irriiiiiiZut are prryoim"Z iy tiint"roaive processors, which are 6802Gbased.

underlying semantics. In brief, functional

:iCj:C,::
are p.rime cardidates for pro_

grammrng parallel machines.

All about Architecture
A dichotomy exists between shared-
memory architectures and distributed-
memory architectures. The former allow
parallel systems to have access to a com_
mon, shared memory, while the lattei
gtve each processor its own memory. As
shown in_ figure 1 , a multitude of cJnfis_
.ur?lr_gns rs possible and has been used f6r
buildrng parallel-processing systems.

I ne most widely used architectures
are bus-based systems, the Hypercube,

and-a design using _special_purposeswrtches, as shown in figures 2i,2b', and
zc. A tess widely known architecture is
torrnd in wafer technology. (See .,The
Third Dimension" on pagE 3l i.;
",_ous:?,a.sed systems (e.g., the FX/g,
rrom AIIlant Computer Systems, Little_
ron, Massachusetts) provide the simplest
rorm of parallelism, having a set of pro_
cessors connected to a set of memory
boards.via a common bus. etirr"""il
these systems are attractive fo, tfr"ii ,ii_
pjtclty,- problems arise in rhe form of
Irmrted scalability, contention for ac_
cessrng the same memory location, and
rising costs for overall spieO gain. in af_

plications.dominated by scalar code, like
lg!r*",hi"uJ CAD applications, you,ll
rlnd good speed increases with from one
to tourprocessors, but after that, adding
processors won't increase speed.
, -Hypercube (e .g. , the Connect ion
Macnrne trom Thinking Machines,
qa3b4qC1 Massachuserts), based onCalTech's Cosmic CuUe, attows mutilJi_
menslonal connections between proces_
lorel lhyl connecting every processor ar
reasr lndrecfly. Although it's attractive
ror rts capability to interconnect thou_
sands of individual processors, corrunu_
nrcatton speed between processors may

NOVEMBER1988. BYTE Nl

I N D E P T H

SIDE BY SIDE

Nexus
(r/o)

Figurc 2b: The Connection lulachine's Hypercube architecture and blowup of individual processor.

lr
l r
l r
i r
l r

t
t
I
il
t
I
'i|

]
:
f
fi
:
t
iil

t
t
T
f,

t
h
n
n

Figure 2cz A Bwterfly processor node blockdiagramandblowup of the Butterfly switchdesign.

282 BYTE. NOVEMBERIg8S

I N D E P T H

SIDE BY SIDE

.ary depending on the number of inter-
;ening processor nodes. Ultimately,
:rogramming a Hypercube architecture
ray require treating it as a loosely cou-
:led multiprocessor with explicit data
:iacement and task assignment per node
:nder certain memory size limitations.

Multistage switch architectures (e.g.,
:re Butterfly from Bolt Beranek and
\€wman, Cambridge) are closely mod-
:ied around crossbar switching connec-
::ons that use separate buses for each pro-
:essor. Whereas crossbar architeciure-:s a serious contention problem, if two
:rccessors want to communicate with the
*me memory location at the same time.
.pecia l -purpose swi tches a l lowing
rultiple paths to the same memory node
i.leviate the contention problem. (See
ie text box "The Crossbar Connection"
:apage278.)

The Problem with Benchmarking
. r general, benchmarking parallel-pro-
::ssing systems is a formidable. if not
npossible, task. While you can use

r{lPS (million instructions per second)
:rd MFLOPS (million floating-point op-
::atlons per second) to compare parallel-
::ocessing _machines, their ratings may
- skewed by I/O-intensive programs or
:.1€ types of programs themselves. More-
1er, transporting code between paral-
:l-processing machines of different'r pes is not possible.

A popgtal dichotomy between righr-
"rng and left-wing machines points to'.^.€ lmportant role of the operating sys-
:n. Just as ideological differences set
- rnservatives apart from liberals when it
- -rmes to the role of the government,
'.eht-wing machines (e.g., Hypercube-'rsed) offer l i tt le control orlupport
:rough their operating systems. With
:ese machines, programmers are re-
:;ired to code more low-level operations
:emselves. Left-wing machines (e.g.,
3.:nerfly) provide more generous sup-
:.rrt by the operating system.

Tte Personal Computer Connection
i'hile parallel processing has reached
:e minicomputer market, parallel-pro-

:rssing capabilities for personal com-
:'-ters.are slowly emerging and usually
: rne in two forms: expansion boards
i-il software simulation. (See ',T800 and
- uting" on page 287.) The INMOS
l'00 Card and T414 CPU offer IBM pC
-<rs qarallel-processing capabilities as
:.::t of the D70l Transputer Develop--ent System. The package comes with-e Algol-based programming language
ccam. The T414 CPU, a 32-bit micro-
::D€essor, is able to pass information to

multiple processors while at the same
time operating on a problem.

Another expansion board that offers
parallel-processing capabil ity is the
PCturbo 286e from Orchid Technology.
The board connects to the IBM pC Ator
XT and lets you run simultaneous appli-
cations in the computer's standard mem-
ory and the 286e's RAM, If you choose
to run two programs in parallel that try
to access the same data or write to the
same disk sector , the data mav be
compromised.

P,*0,
process@ capabilities
for personal computers
are slowly emergtng.

n

The complexity and cost of commer-
cial parallel-processing machines avail-
able today make them prohibitively ex-
pensive for mass use. The available
expansion boards that may allow some
parallel processing on personal com-
puters are primarily for the programmer
gxploring the flavor of this technology.
Integration into existing infrastructures
makes personal computers probable can-
didates for host or front-end vehicles.

Where We Are Going?
Parallel processing, despite its commer-
cial impact over the past 5 years and its
academic endeavors over the past 20
years, is still in an embryonic state. The
three most significant issues standing in
the way of necessary commercial brelk-
throughs are standardization of parallel-
processing languages and architectures,
integration ofparallel processing into the
existing computing infrastructure, and
design of solid interfaces required by the
complexity of the programming taslis.
- Standardization of parallel-processing
languages and architectures is important
because there is currently no sttndard-
ization of parallel-processing techniques
in-sight. One reason for this is that paral-
lel-processing technologies are still
mostly in R&D laboratories, an environ-
ment that promotes individualism. An-
other reason is the potential for diverse
applications that makes it impossible to
predict what such standards should look
like. Finally, the design of hardware is so

far ahead of the state of the art in soft-
ware development that both disciplines
have to be brought to the same levbl be-
fore standardization ofeither software or
hardware becomes possible.

, Integration ofparallel processing into
the existing computing infrastructure is
important because drastic changes are
slow to be implemented, especialiy in an
investment-intensive area like soitware
development and hardware purchases.
Although projects like the one that in-
volves Dow Jones and Thinking Ma-
chines show some promise, many more
successful applications have to come
about before parallel processing be-
comes a major force in the commercial
computing market. As with any other in-
novation, commercial evolution has to
follow the revolution in the laboratories.
Integration is the key.

Last but not least, the desisn of solid
interfaces required by the coriplexity of
programming tasks is a necessify. As we
are beginning to imagine programming
parallel systems of multiple gigabytes in
size, debugging and maintaining such
programs, much more than actuallv
using them, will be delegated to the user
interface. Ultimately, programs may
come about through the intelligent inter-
action in English between the user and
the interface.

For these reasons, personal computer
users will have to limit themselves to
simulating parallelism in the near fu-
ture-that is, until commercial parallel-
processing technology marures. L

BIBLIOGRAPHY
Chandy, K., and Misra, F. parallel pro-

gram Design. Reading, MA: Addison-
Wesley, 1988.

Dongarra, J. C., ed. Experitnental Parallel
Computing Architecture. Amsterdam:
Elsevier Science Publishing Co. , 1987.

Fox, G. C., and Messina, p. C. ,,Advanced
Computer Architectures ." Scientific
American, October 1987, pp. 66-77 .

Frenkel, K. A., ed. "Parallel processing."
Communications of the ACM, vol. 29,
no. 12, December 1986,pp. 1168-1239.

Gelernter, D., ed. "Domesticating Paral-
lelism." Computer, vol. 19, no. 8, Au-
gust 1986, pp. 12-72.

Gullo, K., and Schatz, W. "The Super-
computer Breaks Through." Datama-
tion, vol. 34, no.9,1988, pp. 50-63.

Hillis, W. D. The Connection Machine.
Cambridge, MA: The MIT Press, 1986.

Klaus K. Obermeier is a projects rnan-
ager of the AI Group at Battelle Labora-
tories in Columbus, Ohio. He can be
reached on BIX c /o " editors. "

NOVEMBER1988. BYTE 283

